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Time Dependent Process-Zone Growth In Polycarbonate

Amkee Kim* and Sam-Hong Song**
(Received December I, 1994)

The process zone evolution strongly influences the crack growth of polycarbonate. A

methodology for determination of the kinetics of the process zone evolution was developed by

decoupling these two process. Constant displacement (stress relaxation) conditions under which

the crack length remained. A thermodynamic model for equilibrial process zone in polycar

bonate is developed from the modification of Chudnovsky model. Based on the model the

driving force and a new kinetic equation for evolution of the process zone are proposed after

considerly of the irreversible thermodynamics and chemical reaction theories. In addition, the

validity of model and new kinetic equation are examined experimentally.
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1. Introduction

Numerous authors have reported that slow

crack propagation in polycarbonate (PC) is com

mensurate with the formation and growth of a

proce:ss zone surrounding the crack (Donald et aI.,

1981 ; Nisitani et aI., 1985; Haddaoui et aI.,

1986; Stojimirovic and Kadota et aI., 1992). The

energy required for process zone growth can be

many orders of magnitude greater than the surface

energy associated with crack formation and as

such can provide significant resistance to crack

growth. Thus the kinetics of the process zone

development is an essential factor in the time

dependent fracture behavior analysis of Pc.

A thermodynamic model for an equilibrium

proce:ss zone in polymers was proposed by

Chudnovsky (Stojimirovic and Chudnovsky,

1992) and its validity has been supported by the

experimental studies on vanous poly

ethylenes (Kadota et aI., 1991; Stojimirovic

et aI., 1992). The essence of the Chudnovsky
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Model (CM) is that the process zone can be con

sidered as a homogeneous second phase, i.e.,

transformed material, and thus the shape and the

size of the process zone are derived from the

phase equilibrium conditions. However, the ob

servation of the process zone in poly

carbonate (PC) shows an important difference:

It consists of shear bands whose density varies
noticeably within the zone.

In the present paper, we modify the CM to

account for the variable extent of transformation

of material within the process zone, based on the

experimental observation, and construct a con

stitutive equation for process zone growth em

ploying thermodynamic consideration. We

employ the modified Chudnovsky Model (CM) to

determine the process zone driving force and then

formulate an appropriate kinetic equation follow

ing the frame work of irreversible ther

modynamics.

Finally the validity of newly formulated con

stitutive equation for PC process zone evolution

is examined by experimental data.

2. Experiment

2.1 Material and specimen preparation
Polycarbonate of molecular weight, Mw 38000,

Caliber 300-3, was provided by the Dow Chemi-
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Fig. 1 Dimensions of SEN specimen. 0/2 represents
the applied displacement at grip points.

cal Company in the form of injection molded

plaques of 3 mm thickness. After drying in a

vacuum oven at l20"C for 24 hours, the plaques

were further compressed to 0.7 mm thickness

using a Dake compression molder under the fol

lowing conditions; preheat to 270"C , hold at zero

load for 10 minutes, compression under 4 MN/m2

for 5 minutes, then another 8 minutes under this

same compression condition until cooled to 23"C .

Single edge notched (SEN) specimens of dimen

sions shown in Fig. I were machined from the

compression molded plaques.

2.2 Kinetics of process zone growth under
fixed displacement

The SEN specimens were strained in tension to

fixed displacements, 0 = 1.00, 1.15, 1.25 and 1.35

mm, at a constant cross-head speed of 0.6 mm/sec

at 23"C , then held at constant strain. The load was

monitored throughout the test. The kinetics of the

process zone evolution was monitored through a

video-recording system attached to a microscope.

The process zone size is reconstructed from a

combination of a side view from the video screen

(Fig. 2(a» and optical microscopy of cross

section parallel to the direction of load applica

tion.

3. Observation

Figure 2(a) and b are examples of an actual

determination of the process zone shape and size
from the side view and cross-sections A-A' (nor
mal to the crack plane). These two projections

allow the determination of the process zone

O.5MM
I I

Fig. 2 (a) A side-view of process zone from the
video screen. la represents the length of proc
ess zone.

(b) Cross-section A-A' in polarized transmit
ted light.

dimensions. It is obvious from Fig. 2(b) (cross

section A-A') that there is thinning in the thick

ness direction. In addition, two families of inter

secting shear bands are observed. The final equili

brial process zone size is determined based on the

side-view, the thinning profile and fracture sur

face (cross-section 8-8').

The stress-relaxation behavior during the test is

given in Fig. 3. The dashed lines indicate the

values of remote stress, 6=, at an apparent equilib

rium. This stress behavior is utilized in the com
putation of model and driving force.

The kinetics of the process zone evolution is
depicted in Fig. 4 which shows the process zone

length, la' versus time for SEN specimens for the
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Fig. 3 Stress relaxation data at various displace
ments in SEN.
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Fig. 5 Schematic diagram of a crack and process
zone in polycarbonate
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Fig. 4 Process zone length, la(mm), vs time(sec).
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novsky (Stojimirovic and Chudnovsky, 1992).

The essence of the Chudnovsky Model (CM) is

that the process zone can be considered as a
homogeneous second phase, i. e., transformed
material, and thus the shape and the size of the
process zone are derived from the phase equilib
rium conditions.

Let G be the Gibbs potential of the system

described in Fig. 5 and Vpz be the domain oc
cupied by the process zone. Then for isothermal
condition the equilibrial domain Vpz of the proc

ess zone corresponds to the minimum of G, i. e. :
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four experimental conditions described previous
ly. The process zone is seen to reach at least half

of its final length during the initial ramp loading
and then follows an increasingly slower approach

to an apparent equilibrial size laleqj dependent on
the displacement. The dashed lines in Fig. 4

represent the values of the equilibrial sizes. Some
relatively small crack growth from the notch-tip

occurred during the initial loading and for a short
period thereafter, particularly at the highest strain

loading. However, the crack is arrested soon after
the stress relaxation starts and remains stationary

during subsequent process zone evolution. Thus

this process occurs at essentially constant crack
length. Fig. 4 represents the process zone evolu
tion data acquired at this stage.

4. Rniew of Chudnovsky Model (CM)

A thermodynamic model for an equilibrial
process zone in polymers was proposed by Chud-

(I)

Here, G is a functional of the domain Vpz and a

function of crack length I and applied stress (J~.

Following the reference (Stojimirovic and Chud
novsky, 1992), we employ the Eshelby method to

evaluate a variation of the Gibbs potential due to
a virtual migration of the process zone boundary:

oG=- r o~i(pg--peZ)njdr (2)Ja Vpz

For evaluation of the Gibbs potential, G, of a

crack with the surrounding process zone consist
ing of the second phase (see Fig. 6( a», the two

phase system was decomposed into its elements as
shown in Fig. 6(b). The first element results from
removal of the process zone and substituting its

action with an equivalent traction (Jdr along the
interface «(Jdr is the drawing stress). The second
element is the process zone Vpz within which the

original material submitted to (Jdr undergoes the

transformation (drawing). The width, wo(Xt), of
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Fig. 6 A model for the computation of Gibbs potential: Element one is obtained from removal
of the process zone and substituting its action with an equivalent traction IJdr along the
interface, and element two is obtained from the process zone Vpz within which the origi
nal material submitted to IJdr undergoes the transformation

and the inequality equation 6b ensures the uni

quess of the solution, i. e. :

Here K tot is the stress intensity factor (SIF) for

the element I of Fig. 6(b). K«(Jdr) is the SIF for

the same element with absence of (J~. r represents

2r* /«,1 -1)(Jdr) where r* is the specific transfor
mation energy. This solution leads to the equili

brial process zone size and shape which agree
well with experimental observations on polyethy

lene and thin film polycarbonate (Kadota, 1991 et
al.; Stojimirovic and Kadota et aI., 1992; Sto

jimirovic and Chudnovsky, 1992).

(7)

(6c)

I, (J~, (Jd" and a variable lao Thus the condition
for the minimum Gibbs potential for two-phase
system equilibrium (Eq. I) can be written as :

dC«(J~, I, la' (Jd" ,1) II' -0 (6a)
dl

a
l~const -

d 2 CI
dl~ Il~const >0 (6b)

Here ,1 is draw ratio. The equation 6a leads to the
following equation (Stojimirovic and Chudnovs

ky, 1992):

(3)

the layer of the original material in Fig. 5 that

underwent transformation varies along the proc
ess zone length and is initially unknown. The

resulting width, W*(XI)' of the process zone is w*

(Xl) = ,.l(XI) WO(Xl)' with ,1 being the draw ratio
and assumed constant within the process zone.

The displacement caused by the transformation at
the interface shown in element 2 of Fig. 6(b) is

w*(x])- WO(Xl)'

For coherency of the interface, it is required

that the opening of a slit in element I be equal to

the displacement of the boundary of element 2.

For a slender pr",c'" zone, the displacement of
element I can bc approximated as the crack
opening displacement, LJ, thus leading to the
following compatibility equation:

Then, the width wo(xJ of the initial strip that is
transformed into the process zone is directly

related to the crack-opening displacement of ele
ment I in Fig. 6(b) :

WO(XI)=LJ(XI, I, la)(,.l-I)-l (4)

Thus, the volume Vpz of the initial material can
be expressed as

(5)

where Zo is the initial thickness of the specimen.
The process-zone shape is thus uniquely deter

mined by the process zone length, la' because the
crack-opening displacement depends on constants

5. Modification of Chudnovsky Model
(CM) for Polycarbonate

As mentioned previously, polycarbonate was
observed to undergo non-homogeneous transfor-
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(9)

6. Driving Force for Evolution of the
Process Zone

1.41.3121.110

o : experimental data

l' = 7.05 X 10' J/m3

Ie' = 1.6

Displacement 15 ( mm )

Equilibrial process zone length, la(eq), as a
function of applied displacements. The solid
line represents the theoretical solution

O+-~-..,.-~-..,.-~-..,.-~--r-~--!

0.9

1.0...---~-:------------.

E 2
E

~1--

.-
N 0.8E-....,
(, 0.6

~

lC 0.4

~a 0.2

0.0
05 0.6 0.7 0.8 0.9 10

Only one parameter is employed in the above

treatment for the four experimental condition

reported. The justification of this value comes

from independent tests using the neck formation

in simple tension combined with calorimetric

determination of the residual strain energy stored

in the transformed (necked) material and estima

tion of heat generation during the transformation.

Fig. 7

The driving force on an interface between

original material and the process zone can be

defined following Eshelby, 1970. In our case, the

evolution of the interface is uniquely determined

lal 1a(41)
Fig. 8 Process zone driving force, Xpz, as function

of process zone length normalized by the
apparent equilibrial process zone length, lal
la{ eq). for various applied displacements

(8)

JC. OC ds( t)
ala!I~COnSt+7JY-~=O

The Eq. 9 determines the size of equilibrial

process zone. Figure 7 shows the solution of the

Eq. 9(solid line) with y*=7.05x 106 J/m3 for the

,'arious fixed displacement conditions. The exper

imental data points are shown by the open circles.

where Ii* is the draw ratio for fully transformed

material which is a constant and Ii is a variable

draw ratio reflecting a current extent of transfor

mation. The distributions of S(xd la) differ for a

process zone formed under different conditions. S
(XI/ la} can be approximated experimentally

(Kim, A. et aI., 1993 a).

Thus the Eq. 6a which is the necessary condi

tion of the minimum Gibbs potential is rewritten

as:

mation within the process zone. Fig. 2(b) shows

the optical micrograph in polarized light and the

two intersecting families of shear bands in cross

section A-A'. We consider the individual shear

band as transformed material. Between the shear

bands the material appears to be untransformed.

During the evolution of the process zone, drawing

progre:sses by (a) an increase of the number of

shear bands, and (b) increase of the width of the

individual shear bands at the expense of the

neighboring untransformed material (Ma et aI.,

1989). The various stages of drawn state corre

spond to different densities of shear bands.

To characterize an intermediate transformation

we introduce an extent of transformation S. s=O

corresponds to the original state and s= I is

associated with the fully transformed state. The

thinning of cross-section is a cumulative effect of

the shc:ar banding as illustrated in Fig. 2(b). The

thinning and the draw ratio, Ii, are uniquely

related since the density of transformed material

is practically unchanged (a few percent)(Kadota

et aI., 1991). The extent of transformation, S, is

simply related to the draw ratio Ii which can be

estimated by measuring the thinning (Kim, A. et

aI., 1993 b):
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Fig. 9 A master curve for polycarbonate process
zone kinetics. ia represents the process zone
growth rate.
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Since the Gibbs potential G is dependent on I;
(xllla) as well as la' the process zone driving

force can be presented as :

dY( Xl )

X PZ = - [~t Il~const +-~~ -. Sdl:a
.-J (II)

Figure 8 shows the dependency of the process

zone driving force as a function of lal laleq) for the

four experimental displacement conditions. At

equilibrium the process zone driving force is zero.

by the process zone length, la' as a function of
time. The driving force X pz is determined as :

7. The Kinetic Equation of Process
Zone Evolution

In irreversible thermodynamics for system close

to equilibrium the rate of change toward the

equilibrium is assumed to be proportional to the

corresponding driving force, X. In our case the

rate of approaching equilibrium is defined by the

rate of changes in la' i. e., 1a' Thus a kinetic
equation can be written as :

Note that the Eq. 14 accounts for an equilibrial

state( la=o when Xpz=O) and becomes increas

ingly nonlinear with increasing X pz, that is to say

with increasing departure from the equilibrium.

Since the experiments reported in this paper

were performed at one temperature the equation

is simplified and the data cast as In( 1a) versus

X pz in Fig. 9. The solid line indicates the fit of

Eq. 14 with a constant a as 16.39 X 103(m2/kmol).

The strongly nonlinear kinetics data are now

collapsed into a master curve.

( 13)

( 12)

The Arrhenius equation was first developed to

account for the temperature dependency of the

reaction rate constant, k, in chemical kinetics.

Since the Eg. 12 resembles that of a first order

chemical reaction and so adapting the Arrhenius

assumption of k with incorporation of an activa

tion energy, U, reduced by the process zone

driving force, X pz, we propose the following

equation for the kinetic coefficient in the Eq. 12:

k k (
U-aXpz)

= oexp - RT

where T is the absolute temperature, R is the gas

constant, k o is a material constant with unit of

m4/(J-sec), and a is also a material constant with

unit m2/mole. Finally, combining the Eqs. 12

with 13 we arrive at a new kinetic equation as
follows:

I· [k (U-aXpz)JX (14)a= oexp RT pz

8. Conclusion

(I) An experimental procedure for the study of

the kinetics of the process zone evolution decou

pled from the kinetics of crack growth for

polycarbonate was designed and implemented.

This was achieved by observing the process zone

evolution under stress-relaxation at essentially

constant crack length.

(2) An modification of the Chudnovsky Model

(CM) IS made which accounts for non

homogeneous transformation of material within a

process zone surrounding a crack. The distribu

tion of the extent of transformation was experi

mentally determined in these studies. Further

generalization of the model using the variation of

Gibbs potential should allow for prediction of the
distribution without experimental determination.

(3) The driving force for the process zone

evolution is evaluated and a new kinetic equation
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incorporating the driving force is proposed which

leads to a master curve for the observed growth of

the process zone under various loading histories.
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